Gliding motility of Cytophaga sp. strain U67.
نویسندگان
چکیده
Video techniques were used to analyze the motion of the gliding bacterium Cytophaga sp. strain U67. Cells moved singly on glass along the long axis at a speed of about 2 micrometers/s, advancing, retreating, stopping, pivoting about a pole, or flipping over. They did not flex or roll. Cells of different lengths moved at about the same speed. Cells sometimes spun continuously about a pole at a frequency of about 2 HZ, the body moving in a plane parallel to that of the glass or on the surface of a cone having either a large or a small solid angle. Polystyrene latex spheres moved to and fro on the surfaces of cells, also at a speed of about 2 micrometers/s. They moved in the same fashion whether a cell was in suspension, gliding, or at rest on the glass. Two spheres on the same cell often moved in opposite directions, passing by one another in close proximity. Small and large spheres and aggregates of spheres all moved at about the same speed. An aggregate moved down the side of a cell with a fixed orientation, even when only one sphere was in contact with the cell. Spheres occasionally left one cell and were picked up by another. Cell pretreated with small spheres did not adhere to glass. When the cells were deprived of oxygen, they stopped gliding, and the spheres stopped moving on their surfaces. The spheres became completely immobilized; they no longer moved from cell to cell or exhibited Brownian movement. Cytophaga spp. are known to have a typical gram-negative cell envelope: an inner (cytoplasmic) membrane, a thin peptidoglycan layer, and an outer (lipopolysaccharide) membrane. Our data are consistent with a model for gliding in which sites to which glass and polystyrene strongly adsorb move within the fluid outer membrane along tracks fixed to the rigid peptidoglycan framework.
منابع مشابه
Gliding motility in bacteria: insights from studies of Myxococcus xanthus.
Gliding motility is observed in a large variety of phylogenetically unrelated bacteria. Gliding provides a means for microbes to travel in environments with a low water content, such as might be found in biofilms, microbial mats, and soil. Gliding is defined as the movement of a cell on a surface in the direction of the long axis of the cell. Because this definition is operational and not mecha...
متن کاملCytophaga johnsonae Motility Mutant
The lack of cell translocation and the resulting formation of nonspreading colonies of mutants of the gram-negative gliding bacterium Cytophagajohnsonae have been correlated with the loss of cell surface features of the organism. These cell surface traits include the ability to move polystyrene-latex beads over the cell surface and the ability to be infected by bacteriophages that infect the pa...
متن کاملGliding motility of Mycoplasma sp. nov. strain 163K.
The gliding movements of Mycoplasma sp. nov. strain 163K cells were characterized by photomicrographic and microcinematographic studies. The capability of gliding proved to be a very stable property of strain 163K. Cells were continuously moving, without interruption by resting periods, on glass as well as on plastic surfaces covered with liquid medium. Gliding cells always moved in the directi...
متن کاملCloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA.
The mechanism of bacterial gliding motility (active movement over surfaces without the aid of flagella) is not known. A large number of nonmotile mutants of the gliding bacterium Flavobacterium johnsoniae (Cytophaga johnsonae) have been previously isolated, and genetic techniques to analyze these mutants have recently been developed. We complemented a nonmotile mutant of F. johnsoniae (UW102-09...
متن کاملGliding motility and actinomycin D sensitivity of Fusobacterium nucleatum and other gram-negative rods.
Six strains of gram-negative anaerobic fusiform rods (Fusobacterium and Bacteroides spp.), isolated from deep subgingival locations in humans, were examined for (i) gliding motility in slide cultures, (iii) cell densities on nutrient agar surfaces, and (iii) sensitivity to actinomycin D. Known gliding (FBt) and nonmotile (NM) strains of Myxococcus xanthus served as controls for the gliding and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 151 1 شماره
صفحات -
تاریخ انتشار 1982